Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

نویسندگان

  • Linbo Qiao
  • Bofeng Zhang
  • Jinshu Su
  • Xicheng Lu
چکیده

In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regularization, due to the imposed linearly constraints. In this paper, the optimization problem with linear constraints is solved by the Linearized Alternating Direction Method of Multipliers (LADMM). Moreover, we present a detailed convergence analysis of the LADMM algorithm for solving nonconvex compositely regularized optimization with a large class of nonconvex penalties. Experimental results on several real-world datasets validate the efficacy of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Study of ADMM for Nonconvex Problems

The alternating direction method of multipliers (ADMM) is a common optimization tool for solving constrained and non-differentiable problems. We provide an empirical study of the practical performance of ADMM on several nonconvex applications, including `0 regularized linear regression, `0 regularized image denoising, phase retrieval, and eigenvector computation. Our experiments suggest that AD...

متن کامل

Iteration-Complexity of a Linearized Proximal Multiblock ADMM Class for Linearly Constrained Nonconvex Optimization Problems

This paper analyzes the iteration-complexity of a class of linearized proximal multiblock alternating direction method of multipliers (ADMM) for solving linearly constrained nonconvex optimization problems. The subproblems of the linearized ADMM are obtained by partially or fully linearizing the augmented Lagrangian with respect to the corresponding minimizing block variable. The derived comple...

متن کامل

Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems

In this paper, we consider solving a class of nonconvex and nonsmooth problems frequently appearing in signal processing and machine learning research. The traditional alternating direction method of multipliers encounters troubles in both mathematics and computations in solving the nonconvex and nonsmooth subproblem. In view of this, we propose a reweighted alternating direction method of mult...

متن کامل

Systematic Weight Pruning of DNNs using Alternating Direction Method of Multipliers

We present a systematic weight pruning framework of deep neural networks (DNNs) using the alternating direction method of multipliers (ADMM). We first formulate the weight pruning problem of DNNs as a constrained nonconvex optimization problem, and then adopt the ADMM framework for systematic weight pruning. We show that ADMM is highly suitable for weight pruning due to the computational effici...

متن کامل

Alternating Direction Method of Multipliers for a Class of Nonconvex and Nonsmooth Problems with Applications to Background/Foreground Extraction

In this paper, we study a general optimization model, which covers a large class of existing models for many applications in imaging sciences. To solve the resulting possibly nonconvex, nonsmooth and non-Lipschitz optimization problem, we adapt the alternating direction method of multipliers (ADMM) with a general dual step-size to solve a reformulation that contains three blocks of variables, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016